Java 8 新特性

Java 8 (又称为 jdk 1.8) 是 Java 语言开发的一个主要版本。Oracle 公司于 2014 年 3 月 18 日发布 Java 8 ,它支持函数式编程,新的 JavaScript 引擎,新的日期 API,新的 Stream API 等。

Java 8 的新特性

Java 8 新增了非常多的特性,主要特性包含以下几个:

  • Lambda 表达式 − Lambda允许把函数作为一个方法的参数(函数作为参数传递进方法中。
  • 方法引用 − 方法引用提供了非常有用的语法,可以直接引用已有 Java 类或对象(实例)的方法或构造器。与 lambda 联合使用,方法引用可以使语言的构造更紧凑简洁,减少冗余代码。
  • 默认方法 − 默认方法就是一个在接口里面有了一个实现的方法。
  • 新工具 − 新的编译工具,如:Nashorn 引擎 jjs、 类依赖分析器 jdeps。
  • Stream API −新添加的 Stream API(java.util.stream) 把真正的函数式编程风格引入到 Java 中。
  • Date Time API − 加强对日期与时间的处理。
  • Optional 类 − Optional 类已经成为 Java 8 类库的一部分,用来解决空指针异常。
  • Nashorn, JavaScript 引擎 − Java 8 提供了一个新的 Nashorn javascript 引擎,它允许我们在 JVM 上运行特定的 javascript 应用。

Java 8 包含语言、编译器、库、工具和JVM等方面的十多个新特性。

更多的新特性可以参阅官网:What’s New in JDK 8
JDK 8 下载地址:Java 8 Downloads

Java语言的新特性

Lambda 表达式和函数式接口

Lambda 表达式(也称为闭包)是 Java 8 中最大和最令人期待的语言改变。它允许我们将函数当成参数传递给某个方法,或者把代码本身当作数据处理:函数式开发者非常熟悉这些概念。

很多 JVM 平台上的语言(GroovyScala等)从诞生之日就支持 Lambda 表达式,但是 Java 开发者没有选择,只能使用匿名内部类代替 Lambda 表达式。

Lambda 的设计耗费了很多时间和很大的社区力量,最终找到一种折中的实现方案,可以实现简洁而紧凑的语言结构。

最简单的 Lambda 表达式可由逗号分隔的参数列表->符号语句块组成,例如:

Arrays.asList("a", "b", "d").forEach(e -> System.out.println(e));

在上面这个代码中的参数 e 的类型是由编译器推理得出的,你也可以显式指定该参数的类型,例如:

Arrays.asList("a", "b", "d").forEach((String e) -> System.out.println(e));

如果 Lambda 表达式需要更复杂的语句块,则可以使用花括号将该语句块括起来,类似于 Java 中的函数体,例如:

Arrays.asList("a", "b", "d").forEach(e -> {
        System.out.print(e);
        System.out.print(e);
});

Lambda 表达式可以引用类成员和局部变量(会将这些变量隐式得转换成 final 的),例如下列两个代码块的效果完全相同:

String separator = ",";
Arrays.asList("a", "b", "d").forEach(
        (String e) -> System.out.print(e + separator));

final String separator = ",";
Arrays.asList("a", "b", "d").forEach(
        (String e) -> System.out.print(e + separator));

Lambda 表达式有返回值,返回值的类型也由编译器推理得出。如果 Lambda 表达式中的语句块只有一行,则可以不用使用 return 语句,下列两个代码片段效果相同:

Arrays.asList("a", "b", "d").sort((e1, e2) -> e1.compareTo(e2));

Arrays.asList("a", "b", "d").sort((e1, e2) -> {
    int result = e1.compareTo(e2);
    return result;
});

Lambda 的设计者们为了让现有的功能与 Lambda 表达式良好兼容,考虑了很多方法,于是产生了函数接口这个概念。函数接口指的是只有一个函数的接口,这样的接口可以隐式转换为 Lambda 表达式。java.lang.Runnablejava.util.concurrent.Callable 是函数式接口的最佳例子。在实践中,函数式接口非常脆弱:只要某个开发者在该接口中添加一个函数,则该接口就不再是函数式接口进而导致编译失败。为了克服这种代码层面的脆弱性,并显式说明某个接口是函数式接口,Java 8 提供了一个特殊的注解 @FunctionalInterface(Java 库中的所有相关接口都已经带有这个注解了),举个简单的函数式接口的定义:

@FunctionalInterface
public interface Functional {
    void method();
}

不过有一点需要注意,默认方法和静态方法不会破坏函数式接口的定义,因此如下的代码是合法的。

@FunctionalInterface
public interface FunctionalDefaultMethods {
    void method();

    default void defaultMethod() {
    }
}

Lambda 表达式作为 Java 8 的最大卖点,它有潜力吸引更多的开发者加入到 JVM 平台,并在纯 Java 编程中使用函数式编程的概念。如果你需要了解更多 Lambda 表达式的细节,可以参考官方文档

接口的默认方法和静态方法

Java 8 使用两个新概念扩展了接口的含义:默认方法和静态方法。默认方法使得接口有点类似 traits,不过要实现的目标不一样。默认方法使得开发者可以在 不破坏二进制兼容性的前提下,往现存接口中添加新的方法,即不强制那些实现了该接口的类也同时实现这个新加的方法。

默认方法和抽象方法之间的区别在于抽象方法需要实现,而默认方法不需要。接口提供的默认方法会被接口的实现类继承或者覆写,例子代码如下:

private interface Defaulable {
    // Interfaces now allow default methods, the implementer may or
    // may not implement (override) them.
    default String notRequired() {
        return "Default implementation";
    }
}
private static class DefaultableImpl implements Defaulable {
}
private static class OverridableImpl implements Defaulable {
    @Override
    public String notRequired() {
        return "Overridden implementation";
    }
}

Defaulable 接口使用关键字 default 定义了一个默认方法 notRequired()DefaultableImpl 类实现了这个接口,同时默认继承了这个接口中的默认方法;OverridableImpl 类也实现了这个接口,但覆写了该接口的默认方法,并提供了一个不同的实现。

Java 8 带来的另一个有趣的特性是在接口中可以定义静态方法,例子代码如下:

private interface DefaulableFactory {
    // Interfaces now allow static methods
    static Defaulable create(Supplier<Defaulable> supplier) {
        return supplier.get();
    }
}

下面的代码片段整合了默认方法和静态方法的使用场景:

public static void main(String[] args) {
    Defaulable defaulable = DefaulableFactory.create(DefaultableImpl::new);
    System.out.println(defaulable.notRequired());

    defaulable = DefaulableFactory.create(OverridableImpl::new);
    System.out.println(defaulable.notRequired());
}

这段代码的输出结果如下:

Default implementation
Overridden implementation

由于 JVM 上的默认方法的实现在字节码层面提供了支持,因此效率非常高。默认方法允许在不打破现有继承体系的基础上改进接口。该特性在官方库中的应用是:给 java.util.Collection 接口添加新方法,如 stream()parallelStream()forEach()removeIf() 等等。

尽管默认方法有这么多好处,但在实际开发中应该谨慎使用:在复杂的继承体系中,默认方法可能引起歧义和编译错误。如果你想了解更多细节,可以参考官方文档

方法引用

方法引用使得开发者可以直接引用现存的方法、Java 类的构造方法或者实例对象。方法引用和 Lambda 表达式配合使用,使得 Java 类的构造方法看起来紧凑而简洁,没有很多复杂的模板代码。

西门的例子中,Car 类是不同方法引用的例子,可以帮助读者区分四种类型的方法引用:

public static class Car {
    public static Car create(final Supplier<Car> supplier) {
        return supplier.get();
    }

    public static void collide(final Car car) {
        System.out.println("Collided " + car.toString());
    }

    public void follow(final Car another) {
        System.out.println("Following the " + another.toString());
    }

    public void repair() {
        System.out.println("Repaired " + this.toString());
    }
}

第一种方法引用的类型是构造器引用,语法是 Class::new,或者更一般的形式:Class<T>::new。注意:这个构造器没有参数。

final Car car = Car.create(Car::new);
final List<Car> cars = Arrays.asList(car);

第二种方法引用的类型是静态方法引用,语法是 Class::static_method。注意:这个方法接受一个 Car 类型的参数。

cars.forEach(Car::collide);

第三种方法引用的类型是某个类的成员方法的引用,语法是 Class::method,注意,这个方法没有定义入参:

cars.forEach(Car::repair);

第四种方法引用的类型是某个实例对象的成员方法的引用,语法是 instance::method。注意:这个方法接受一个 Car 类型的参数:

final Car police = Car.create(Car::new);
cars.forEach(police::follow);

运行上述例子,可以在控制台看到如下输出(Car实例可能不同):

Collided com.javacodegeeks.java8.method.references.MethodReferences$Car@7a81197d
Repaired com.javacodegeeks.java8.method.references.MethodReferences$Car@7a81197d
Following the com.javacodegeeks.java8.method.references.MethodReferences$Car@7a81197d

如果想了解和学习更详细的内容,可以参考官方文档

重复注解

自从 Java 5 中引入注解以来,这个特性开始变得非常流行,并在各个框架和项目中被广泛使用。不过,注解有一个很大的限制是:在同一个地方不能多次使用同一个注解。Java 8 打破了这个限制,引入了重复注解的概念,允许在同一个地方多次使用同一个注解。

在 Java 8 中使用 @Repeatable 注解定义重复注解,实际上,这并不是语言层面的改进,而是编译器做的一个 trick,底层的技术仍然相同。可以利用下面的代码说明:

package com.javacodegeeks.java8.repeatable.annotations;

import java.lang.annotation.ElementType;
import java.lang.annotation.Repeatable;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

public class RepeatingAnnotations {

    @Target(ElementType.TYPE)
    @Retention(RetentionPolicy.RUNTIME)
    public @interface Filters {
        Filter[] value();
    }

    @Target(ElementType.TYPE)
    @Retention(RetentionPolicy.RUNTIME)
    @Repeatable(Filters.class)
    public @interface Filter {
        String value();
    }

    @Filter("filter1")
    @Filter("filter2")
    public interface Filterable {
    }

    public static void main(String[] args) {
        for (Filter filter : Filterable.class.getAnnotationsByType(Filter.class)) {
            System.out.println(filter.value());
        }
    }

}

正如我们所见,这里的 Filter 类使用 @Repeatable(Filters.class) 注解修饰,而 Filters 是存放 Filter 注解的容器,编译器尽量对开发者屏蔽这些细节。这样,Filterable 接口可以用两个 Filter 注解注释(这里并没有提到任何关于Filters的信息)。

另外,反射 API 提供了一个新的方法:getAnnotationsByType(),可以返回某个类型的重复注解,例如 Filterable.class.getAnnoation(Filters.class) 将返回两个 Filter 实例,输出到控制台的内容如下所示:

filter1
filter2

如果你希望了解更多内容,可以参考官方文档

更好的类型推断

Java 8 编译器在类型推断方面有很大的提升,在很多场景下编译器可以推导出某个参数的数据类型,从而使得代码更为简洁。例子代码如下:

package com.javacodegeeks.java8.type.inference;

public class Value<T> {
    public static <T> T defaultValue() {
        return null;
    }

    public T getOrDefault(T value, T defaultValue) {
        return (value != null) ? value : defaultValue;
    }
}

下列代码是 Value<String> 类型的应用:

package com.javacodegeeks.java8.type.inference;

public class TypeInference {
    public static void main(String[] args) {
        final Value<String> value = new Value<>();
        value.getOrDefault("22", Value.defaultValue());
    }
}

参数 Value.defaultValue() 的类型由编译器推导得出,不需要显式指明。在 Java 7 中这段代码会有编译错误,除非使用 Value.<String>defaultValue()

拓宽注解的应用场景

Java 8 拓宽了注解的应用场景。现在,注解几乎可以使用在任何元素上:局部变量、接口类型、超类和接口实现类,甚至可以用在函数的异常定义上。下面是一些例子:

package com.javacodegeeks.java8.annotations;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import java.util.ArrayList;
import java.util.Collection;

public class Annotations {
    @Retention(RetentionPolicy.RUNTIME)
    @Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
    public @interface NonEmpty {
    }

    public static class Holder<@NonEmpty T> extends @NonEmpty Object {
        public void method() throws @NonEmpty Exception {
        }
    }

    @SuppressWarnings("unused")
    public static void main(String[] args) {
        final Holder<String> holder = new @NonEmpty Holder<String>();
        @NonEmpty Collection<@NonEmpty String> strings = new ArrayList<>();
    }
}

ElementType.TYPE_USERElementType.TYPE_PARAMETER 是 Java 8 新增的两个注解,用于描述注解的使用场景。Java 语言也做了对应的改变,以识别这些新增的注解。

Java 编译器的新特性

参数名称

为了在运行时获得 Java 程序中方法的参数名称,老一辈的 Java 程序员必须使用不同方法,例如 Paranamer liberary。Java 8 终于将这个特性规范化,在语言层面(使用反射API和Parameter.getName()方法)和字节码层面(使用新的javac编译器以及-parameters参数)提供支持。

package com.javacodegeeks.java8.parameter.names;

import java.lang.reflect.Method;
import java.lang.reflect.Parameter;

public class ParameterNames {
    public static void main(String[] args) throws Exception {
        Method method = ParameterNames.class.getMethod("main", String[].class);
        for (final Parameter parameter : method.getParameters()) {
            System.out.println("Parameter: " + parameter.getName());
        }
    }
}

在 Java 8 中这个特性是默认关闭的,因此如果不带 -parameters 参数编译上述代码并运行,则会输出如下结果:

Parameter: arg0

如果带 -parameters 参数,则会输出如下结果(正确的结果):

Parameter: args

如果你使用 Maven 进行项目管理,则可以在 maven-compiler-plugin 编译器的配置项中配置 -parameters 参数:

<plugin>
    <groupId>org.apache.maven.plugins</groupId>
    <artifactId>maven-compiler-plugin</artifactId>
    <version>3.1</version>
    <configuration>
        <compilerArgument>-parameters</compilerArgument>
        <source>1.8</source>
        <target>1.8</target>
    </configuration>
</plugin>

Java 官方库的新特性

Java 8 增加了很多新的工具类(date/time类),并扩展了现存的工具类,以支持现代的并发编程、函数式编程等。

Optional

Java 应用中最常见的 bug 就是空值异常。在 Java 8 之前,Google Guava 引入了 Optionals 类来解决 NullPointerException,从而避免源码被各种 null 检查污染,以便开发者写出更加整洁的代码。Java 8 也将 Optional 加入了官方库。

Optional 仅仅是一个容器:存放 T 类型的值或者 null,它提供了一些有用的方法来避免显式的 null 检查,可以参考 Java 8 官方文档了解更多细节。

接下来看一点使用 Optional 的例子:可能为空的值或者某个类型的值:

Optional<String> fullName = Optional.ofNullable(null);
System.out.println("Full Name is set? " + fullName.isPresent());
System.out.println("Full Name: " + fullName.orElseGet(() -> "[none]"));
System.out.println(fullName.map(s -> "Hey " + s + "!").orElse("Hey Stranger!"));

如果 Optional 实例持有一个非空值,则 isPresent() 方法返回 true,否则返回 false;orElseGet() 方法,Optional 实例持有 null,则可以接受一个 lambda 表达式生成的默认值;map() 方法可以将现有的 Opetional 实例的值转换成新的值;orElse() 方法与 orElseGet() 方法类似,但是在持有null的时候返回传入的默认值。

上述代码的输出结果如下:

Full Name is set? false
Full Name: [none]
Hey Stranger!

再看下另一个简单的例子:

Optional<String> firstName = Optional.of("Tom");
System.out.println("First Name is set? " + firstName.isPresent());
System.out.println("First Name: " + firstName.orElseGet(() -> "[none]"));
System.out.println(firstName.map(s -> "Hey " + s + "!").orElse("Hey Stranger!"));
System.out.println();

这个例子的输出是:

First Name is set? true
First Name: Tom
Hey Tom!

如果想了解更多的细节,请参考官方文档

Streams API

新增的 Stream API(java.util.stream)将生成环境的函数式编程引入了 Java 库中。这是目前为止最大的一次对 Java 库的完善,以便开发者能够写出更加有效、更加简洁和紧凑的代码。

Steam API 极大得简化了集合操作(后面我们会看到不止是集合),首先看下这个叫 Task 的类:

public class Streams {

    private enum Status {
        OPEN, CLOSED
    }

    private static final class Task {
        private final Status status;
        private final Integer points;

        Task(final Status status, final Integer points) {
            this.status = status;
            this.points = points;
        }

        public Integer getPoints() {
            return points;
        }

        public Status getStatus() {
            return status;
        }

        @Override
        public String toString() {
            return String.format("[%s, %d]", status, points);
        }
    }

}

Task 类有一个分数(或伪复杂度)的概念,另外还有两种状态:OPEN 或者 CLOSED。现在假设有一个 task 集合:

final Collection<Task> tasks = Arrays.asList(
        new Task(Status.OPEN, 5),
        new Task(Status.OPEN, 13),
        new Task(Status.CLOSED, 8)
);

首先看一个问题:在这个 task 集合中一共有多少个 OPEN 状态的点?在 Java 8 之前,要解决这个问题,则需要使用 foreach 循环遍历 task 集合;但是在 Java 8 中可以利用 steams 解决:包括一系列元素的列表,并且支持顺序和并行处理。

// Calculate total points of all active tasks using sum()
final long totalPointsOfOpenTasks = tasks
        .stream()
        .filter(task -> task.getStatus() == Status.OPEN)
        .mapToInt(Task::getPoints)
        .sum();

System.out.println("Total points: " + totalPointsOfOpenTasks);

运行这个方法的控制台输出是:

Total points: 18

这里有很多知识点值得说。首先,tasks 集合被转换成 steam 表示;其次,在 steam 上的 filter 操作会过滤掉所有 CLOSED 的 task;第三,mapToInt 操作基于每个 task 实例的 Task::getPoints 方法将 task 流转换成 Integer 集合;最后,通过 sum 方法计算总和,得出最后的结果。

在学习下一个例子之前,还需要记住一些 steams(点此更多细节)的知识点。Steam 之上的操作可分为中间操作和晚期操作。

中间操作会返回一个新的 steam —— 执行一个中间操作(例如filter)并不会执行实际的过滤操作,而是创建一个新的 steam,并将原 steam 中符合条件的元素放入新创建的 steam。

晚期操作(例如 forEach 或者 sum),会遍历 steam 并得出结果或者附带结果;在执行晚期操作之后,steam 处理线已经处理完毕,就不能使用了。在几乎所有情况下,晚期操作都是立刻对 steam 进行遍历。

steam 的另一个价值是创造性地支持并行处理(parallel processing)。对于上述的 tasks 集合,我们可以用下面的代码计算所有任务的点数之和:

// Calculate total points of all tasks
final double totalPoints = tasks
        .stream()
        .parallel()
        .map(task -> task.getPoints()) // or map( Task::getPoints )
        .reduce(0, Integer::sum);

System.out.println("Total points (all tasks): " + totalPoints);

这里我们使用 parallel 方法并行处理所有的 task,并使用 reduce 方法计算最终的结果。控制台输出如下:

Total points(all tasks): 26.0

对于一个集合,经常需要根据某些条件对其中的元素分组。利用 steam 提供的 API 可以很快完成这类任务,代码如下:

// Group tasks by their status
final Map<Status, List<Task>> map = tasks
        .stream()
        .collect(Collectors.groupingBy(Task::getStatus));

System.out.println(map);

控制台的输出如下:

{CLOSED=[[CLOSED, 8]], OPEN=[[OPEN, 5], [OPEN, 13]]}

最后一个关于 tasks 集合的例子问题是:如何计算集合中每个任务的点数在集合中所占的比重,具体处理的代码如下:

// Calculate the weight of each tasks (as percent of total points) 
final Collection<String> result = tasks
        .stream()                                      // Stream< String >
        .mapToInt(Task::getPoints)                     // IntStream
        .asLongStream()                                // LongStream
        .mapToDouble(points -> points / totalPoints)   // DoubleStream
        .boxed()                                       // Stream< Double >
        .mapToLong(weigth -> (long) (weigth * 100))    // LongStream
        .mapToObj(percentage -> percentage + "%")      // Stream< String>
        .collect(Collectors.toList());                 // List< String >

System.out.println(result);

控制台输出结果如下:

[19%, 50%, 30%]

最后,正如之前所说,Steam API 不仅可以作用于 Java 集合,传统的 IO 操作(从文件或者网络一行一行得读取数据)可以受益于 steam 处理,这里有一个小例子:

final Path path = new File(filename).toPath();
try (Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8)) {
        lines.onClose(() -> System.out.println("Done!")).forEach(System.out::println);
}

Stream 的方法 onClose 返回一个等价的有额外句柄的 Stream,当 Stream 的 close() 方法被调用的时候这个句柄会被执行。Stream API、Lambda 表达式还有接口默认方法和静态方法支持的方法引用,是 Java 8 对软件开发的现代范式的响应。

Date/Time API

Java 8 引入了新的 Date-Time API(JSR 310)来改进时间、日期的处理。时间和日期的管理一直是最令 Java 开发者痛苦的问题。java.util.Date 和后来的 java.util.Calendar 一直没有解决这个问题(甚至令开发者更加迷茫)。

因为上面这些原因,诞生了第三方库 Joda-Time,可以替代 Java 的时间管理 API。Java 8 中新的时间和日期管理 API 深受 Joda-Time 影响,并吸收了很多 Joda-Time 的精华。新的 java.time 包包含了所有关于日期、时间、时区、Instant(跟日期类似但是精确到纳秒)、duration(持续时间)和时钟操作的类。新设计的API认真考虑了这些类的不变性(从 java.util.Calendar 吸取的教训),如果某个实例需要修改,则返回一个新的对象。

我们接下来看看 java.time 包中的关键类和各自的使用例子。
首先,Clock 类使用时区来返回当前的纳秒时间和日期。Clock 可以替代 System.currentTimeMillis()TimeZone.getDefault()

// Get the system clock as UTC offset 
final Clock clock = Clock.systemUTC();
System.out.println(clock.instant());
System.out.println(clock.millis());

这个例子的输出结果是:

2014-04-12T15:19:29.282Z
1397315969360

第二,关注下 LocalDateLocalTime 类。LocalDate 仅仅包含 ISO-8601 日历系统中的日期部分;LocalTime 则仅仅包含该日历系统中的时间部分。这两个类的对象都可以使用 Clock 对象构建得到。

// Get the local date and local time
final LocalDate date = LocalDate.now();
final LocalDate dateFromClock = LocalDate.now(clock);

System.out.println(date);
System.out.println(dateFromClock);

// Get the local date and local time
final LocalTime time = LocalTime.now();
final LocalTime timeFromClock = LocalTime.now(clock);

System.out.println(time);
System.out.println(timeFromClock);

上述例子的输出结果如下:

2014-04-12
2014-04-12
11:25:54.568
15:25:54.568

LocalDateTime 类包含了 LocalDateLocalTime 的信息,但是不包含 ISO-8601 日历系统中的时区信息。这里有一些关于 LocalDate 和 LocalTime 的例子

// Get the local date/time
final LocalDateTime datetime = LocalDateTime.now();
final LocalDateTime datetimeFromClock = LocalDateTime.now(clock);

System.out.println(datetime);
System.out.println(datetimeFromClock);

上述这个例子的输出结果如下:

2014-04-12T11:37:52.309
2014-04-12T15:37:52.309

如果你需要特定时区的 data/time 信息,则可以使用 ZoneDateTime,它保存有 ISO-8601 日期系统的日期和时间,而且有时区信息。下面是一些使用不同时区的例子:

// Get the zoned date/time
final ZonedDateTime zonedDatetime = ZonedDateTime.now();
final ZonedDateTime zonedDatetimeFromClock = ZonedDateTime.now(clock);
final ZonedDateTime zonedDatetimeFromZone = ZonedDateTime.now(ZoneId.of("America/Los_Angeles"));

System.out.println(zonedDatetime);
System.out.println(zonedDatetimeFromClock);
System.out.println(zonedDatetimeFromZone);

这个例子的输出结果是:

2014-04-12T11:47:01.017-04:00[America/New_York]
2014-04-12T15:47:01.017Z
2014-04-12T08:47:01.017-07:00[America/Los_Angeles]

最后看下 Duration 类,它持有的时间精确到秒和纳秒。这使得我们可以很容易得计算两个日期之间的不同,例子代码如下:

// Get duration between two dates
final LocalDateTime from = LocalDateTime.of(2014, Month.APRIL, 16, 0, 0, 0);
final LocalDateTime to = LocalDateTime.of(2015, Month.APRIL, 16, 23, 59, 59);

final Duration duration = Duration.between(from, to);
System.out.println("Duration in days: " + duration.toDays());
System.out.println("Duration in hours: " + duration.toHours());

这个例子用于计算2014年4月16日和2015年4月16日之间的天数和小时数,输出结果如下:

Duration in days: 365
Duration in hours: 8783

对于 Java 8 的新日期时间的总体印象还是比较积极的,一部分是因为 Joda-Time 的积极影响,另一部分是因为官方终于听取了开发人员的需求。如果希望了解更多细节,可以参考官方文档

Nashorn JavaScript 引擎

Java 8 提供了新的 Nashorn JavaScript 引擎,使得我们可以在 JVM 上开发和运行 JS 应用。Nashorn JavaScript 引擎是 javax.script.ScriptEngine 的另一个实现版本,这类 Script 引擎遵循相同的规则,允许 Java 和 JavaScript 交互使用,例子代码如下:

ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("JavaScript");

System.out.println(engine.getClass().getName());
System.out.println("Result:" + engine.eval("function f() { return 1; }; f() + 1;"));

这个代码的输出结果如下:

jdk.nashorn.api.scripting.NashornScriptEngine
Result: 2

Base64

对 Base64 编码的支持已经被加入到 Java 8 官方库中,这样不需要使用第三方库就可以进行 Base64 编码,例子代码如下:

package com.javacodegeeks.java8.base64;

import java.nio.charset.StandardCharsets;
import java.util.Base64;

public class Base64s {
    public static void main(String[] args) {
        final String text = "Base64 finally in Java 8!";

        final String encoded = Base64
                .getEncoder()
                .encodeToString(text.getBytes(StandardCharsets.UTF_8));
        System.out.println(encoded);

        final String decoded = new String(
                Base64.getDecoder().decode(encoded),
                StandardCharsets.UTF_8);
        System.out.println(decoded);
    }
}

这个例子的输出结果如下:

QmFzZTY0IGZpbmFsbHkgaW4gSmF2YSA4IQ==
Base64 finally in Java 8!

新的 Base64 API 也支持 URL 和 MINE 的编码解码(Base64.getUrlEncoder() / Base64.getUrlDecoder(), Base64.getMimeEncoder() / Base64.getMimeDecoder())。

BASE64不是用来加密的,是BASE64编码后的字符串,全部都是由标准键盘上面的常规字符组成,这样编码后的字符串在网关之间传递不会产生UNICODE字符串不能识别或者丢失的现象。你再仔细研究下EMAIL就会发现其实EMAIL就是用base64编码过后再发送的。然后接收的时候再还原。

并行数组

Java 8 版本新增了很多新的方法,用于支持并行数组处理。最重要的方法是 parallelSort(),可以显著加快多核机器上的数组排序。下面的例子论证了 parallexXxx 系列的方法:

package com.javacodegeeks.java8.parallel.arrays;

import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;

public class ParallelArrays {
    public static void main(String[] args) {
        long[] arrayOfLong = new long[20000];

        Arrays.parallelSetAll(arrayOfLong,
                index -> ThreadLocalRandom.current().nextInt(1000000));
        Arrays.stream(arrayOfLong).limit(10).forEach(
                i -> System.out.print(i + " "));
        System.out.println();

        Arrays.parallelSort(arrayOfLong);
        Arrays.stream(arrayOfLong).limit(10).forEach(
                i -> System.out.print(i + " "));
        System.out.println();
    }
}

上述这些代码使用 parallelSetAll() 方法生成20000个随机数,然后使用 parallelSort() 方法进行排序。这个程序会输出乱序数组和排序数组的前10个元素。上述例子的代码输出的结果是:

Unsorted: 591217 891976 443951 424479 766825 351964 242997 642839 119108 552378 
Sorted: 39 220 263 268 325 607 655 678 723 793

并发性

基于新增的 lambda 表达式和 steam 特性,为 Java 8 中为 java.util.concurrent.ConcurrentHashMap 类添加了新的方法来支持聚焦操作;另外,也为 java.util.concurrentForkJoinPool 类添加了新的方法来支持通用线程池操作(更多内容可以参考我们的并发编程课程)。

Java 8 还添加了新的 java.util.concurrent.locks.StampedLock 类,用于支持基于容量的锁——该锁有三个模型用于支持读写操作(可以把这个锁当做是 java.util.concurrent.locks.ReadWriteLock 的替代者)。

java.util.concurrent.atomic 包中也新增了不少工具类,列举如下:

  • DoubleAccumulator
  • DoubleAdder
  • LongAccumulator
  • LongAdder

新的 Java 工具

Java 8 提供了一些新的命令行工具,这部分会讲解一些对开发者最有用的工具。

Nashorn 引擎:jjs

jjs 是一个基于标准 Nashorn 引擎的命令行工具,可以接受 js 源码并执行。例如,我们写一个 func.js 文件,内容如下:

function f() {
     return 1;
};

print(f() + 1);

可以在命令行中执行这个命令:jjs func.js,控制台输出结果是:

2

如果需要了解细节,可以参考官方文档

类依赖分析器:jdeps

jdeps 是一个相当棒的命令行工具,它可以展示包层级和类层级的 Java 类依赖关系,它以 .class 文件、目录或者 JAR 文件为输入,然后会把依赖关系输出到控制台。

我们可以利用 jedps 分析下 Spring Framework 库,为了让结果少一点,仅仅分析一个 JAR 文件:org.springframework.core-3.0.5.RELEASE.jar

jdeps org.springframework.core-3.0.5.RELEASE.jar

这个命令会输出很多结果,我们仅看下其中的一部分:依赖关系按照包分组,如果在 classpath 上找不到依赖,则显示 “not found”。

org.springframework.core-3.0.5.RELEASE.jar -> C:\Program Files\Java\jdk1.8.0\jre\lib\rt.jar
   org.springframework.core (org.springframework.core-3.0.5.RELEASE.jar)
      -> java.io                                            
      -> java.lang                                          
      -> java.lang.annotation                               
      -> java.lang.ref                                      
      -> java.lang.reflect                                  
      -> java.util                                          
      -> java.util.concurrent                               
      -> org.apache.commons.logging                         not found
      -> org.springframework.asm                            not found
      -> org.springframework.asm.commons                    not found
   org.springframework.core.annotation (org.springframework.core-3.0.5.RELEASE.jar)
      -> java.lang                                          
      -> java.lang.annotation                               
      -> java.lang.reflect                                  
      -> java.util

更多的细节可以参考官方文档

JVM的新特性

使用 MetaspaceJEP 122)代替持久代(PermGen space)。在 JVM 参数方面,使用 -XX:MetaSpaceSize-XX:MaxMetaspaceSize 代替原来的 -XX:PermSize-XX:MaxPermSize

参考资源


评论
 上一篇
Java 9 新特性 Java 9 新特性
Java 9 正式发布于 2017 年 9 月 21 日。作为 Java 8 之后 3 年半才发布的新版本,Java 9 带来了很多重大的变化。其中最主要的变化是 Java 平台模块系统的引入。除此之外,还有一些新的特性。 Java 9 的
2018-11-17
下一篇 
Android KTX 简介 Android KTX 简介
KTX 简介Android KTX 是一组 Kotlin 扩展程序,属于 Android Jetpack 系列。它优化了供 Kotlin 使用的 Jetpack 和 Android 平台 API。Android KTX 旨在让您利用 Kot
2018-11-11
  目录